Vet + i
REFERENCE WEBSITE ON RESEARCH,
DEVELOPMENT AND INNOVATION IN ANIMAL HEALTH
CREATE PROJECT PROPOSALS
 

Private area

Access to web private area
Búsqueda de texto en la web

fbus

Research lines Research projects Patents Transferable Research Services / Facilities Publications

 Reverse vaccinology

A major drawback in vaccine development in animal health is the fact that antigenic peptides presented by MHC class I (in pigs SLA-I) have not been fully characterized, hampering the rational design of vaccines. Identification and characterization of B- and T-cell epitopes (also known as antigens) for a given pathogen has proved crucial for understanding the basic mechanisms of immunological protection and for the rational design of effective vaccines. Protective immunity is usually mediated by B lymphocytes, CD8+/CD4+ T lymphocytes or both. Recognition of epitopes by lymphocytes from different species and individuals is restricted by the major histocompatibility complex (MHC) molecules – named swine leukocyte antigen (SLA) in pigs- which is responsible for foreign antigen presentation. In the case of viral infections, classical SLA class I (SLA-I) molecules act as molecular cradles that present endogenous and foreign peptides or epitopes to cytotoxic CD8+T cells (CTL) at the cell surface of healthy and infected cells. Thus, they provide the immune system with a mechanism for interrogating the viral proteome from the outside of infected cells. Our team and in collaboration with other international groups have applied reverse vaccinology to identify cross-reacting MHC class I T-cell epitopes from two different Swine Influenza virus (SwIV) H1N1 lineages in pigs presented by SLA-1*0702.
Research group access  
An initiative of

Vet + i
Aid PTR2022-001249 financed by:

UNION EUROPEA - FONDO EUROPEO DE DESARROLLO REGIONAL